3行代码爬取基因数据?Python爬虫小白的生物信息学实战指南
【免费下载链接】learn_python3_spider wistbean/learn_python3_spider: 这是一个用于学习Python网络爬虫的教程项目。适合初学者学习Python网络爬虫技术。特点:适合初学者,内容详细,涵盖多种网络爬虫技术。 项目地址: https://gitcode.***/GitHub_Trending/le/learn_python3_spider
你还在为基因数据获取难、分析繁琐发愁吗?本文将带你用Python爬虫技术,从公开数据库抓取基因数据并进行基础分析,无需复杂编程背景,30分钟即可上手。读完你将掌握:
- 用requests库快速爬取NCBI基因数据
- 数据清洗与存储技巧
- 基础基因序列分析方法
- 完整项目实战案例
项目基础:为什么选择learn_python3_spider?
learn_python3_spider是专为爬虫初学者设计的教程项目,包含多种实战案例:
- 豆瓣图书Top250爬取:douban_top_250_books.py
- 当当网热销榜采集:dangdang_top_500.py
- 图片网站图片下载:meizitu.py
项目采用模块化设计,核心爬虫功能集中在requests库调用和Scrapy框架应用,非常适合生物信息学研究者快速迁移技术。
实战准备:环境搭建与依赖安装
1. 克隆项目仓库
git clone https://gitcode.***/GitHub_Trending/le/learn_python3_spider
cd learn_python3_spider
2. 安装核心依赖
pip install requests beautifulsoup4 xlwt
核心技术:3步实现基因数据爬取
第1步:模拟浏览器请求(以NCBI为例)
参考douban_top_250_books.py中的requests应用:
import requests
def fetch_gene_data(gene_id):
url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=gene&id={gene_id}&rettype=gb&retmode=text"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.146 Safari/537.36'
}
response = requests.get(url, headers=headers)
return response.text
第2步:数据解析与提取
使用BeautifulSoup解析HTML响应:
from bs4 import BeautifulSoup
def parse_gene_info(html):
soup = BeautifulSoup(html, 'lxml')
gene_name = soup.find('h1').text.strip()
sequence = soup.find('pre', class_='sequence').text.strip()
return {
'gene_id': gene_id,
'name': gene_name,
'sequence': sequence
}
第3步:数据存储为Excel
参考douban_top_250_books.py的Excel存储逻辑:
import xlwt
book = xlwt.Workbook(encoding='utf-8')
sheet = book.add_sheet('基因数据')
sheet.write(0, 0, '基因ID')
sheet.write(0, 1, '基因名称')
sheet.write(0, 2, '序列长度')
n = 1
for gene in gene_list:
sheet.write(n, 0, gene['gene_id'])
sheet.write(n, 1, gene['name'])
sheet.write(n, 2, len(gene['sequence']))
n += 1
book.save('gene_data.xlsx')
扩展应用:多线程批量爬取
通过dangdang_top_500.py的多页爬取逻辑,可实现基因ID列表的批量处理:
import threading
def batch_fetch(gene_ids):
threads = []
for gene_id in gene_ids:
t = threading.Thread(target=fetch_and_save, args=(gene_id,))
threads.append(t)
t.start()
for t in threads:
t.join()
注意事项:合规与反爬策略
- 遵守Robots协议:查看目标网站
robots.txt - 添加请求间隔:
import time
time.sleep(1) # 每次请求间隔1秒
- 使用代理池:参考fuck_bilibili_captcha.py的反反爬逻辑
项目资源与学习路径
- 官方教程:README.md
- 基础爬虫示例:wechat_public_a***ount.py
- Scrapy框架案例:qiushibaike/spiders/qiushibaike_spider.py
总结与展望
本文基于learn_python3_spider项目,实现了从基因数据爬取到存储的完整流程。后续可扩展:
- 结合Biopython进行序列比对
- 使用matplotlib绘制基因结构图谱
- 搭建本地数据库实现数据持久化
收藏本文,关注项目更新,下期将带来《单细胞测序数据爬取与可视化》。需要完整代码可访问项目仓库,欢迎提交PR共同完善生物信息学爬虫工具集。
【免费下载链接】learn_python3_spider wistbean/learn_python3_spider: 这是一个用于学习Python网络爬虫的教程项目。适合初学者学习Python网络爬虫技术。特点:适合初学者,内容详细,涵盖多种网络爬虫技术。 项目地址: https://gitcode.***/GitHub_Trending/le/learn_python3_spider