✨个人主页: 熬夜学编程的小林
💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】【Linux系统编程】【MySQL】
目录
1、索引
1.1、没有索引,可能会有什么问题
1.2、认识磁盘
1.2.1、MySQL与存储
1.2.2、先来研究一下磁盘
1.2.3、在看看磁盘中一个盘片
1.2.4、扇区
1.2.5、定位扇区
1.2.6、结论
1.2.7、磁盘随机访问与连续访问
1.3、MySQL 与磁盘交互基本单位
1.4、建立共识
1、索引
1.1、没有索引,可能会有什么问题
索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。
常见索引分为:
- 主键索引(primary key)
- 唯一索引(unique)
- 普通索引(index)
- 全文索引(fulltext)--解决中子文索引问题。
案例:
先整一个海量表,在查询的时候,看看没有索引时有什么问题?
--构建一个8000000条记录的数据
--构建的海量表数据需要有差异性,所以使用存储过程来创建, 拷贝下面代码就可以了,暂时不用理解
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i = i + 1;
end while;
return return_str;
end $$
delimiter ;
--产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;
--创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set auto***mit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
***mit;
end $$
delimiter ;
-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);
到此,已经创建出了海量数据的表了。
此处博主使用rz直接导入.sql文件。
rz # 从外部导入到Linux中
source 文件路径 # 让文件生效,即运行文件内部语句
因为该表比较大,因此需要等待一会才能创建成功!!!
mysql> source /root/mysql/index_data.sql
Query OK, 0 rows affected, 1 warning (0.00 sec)
Query OK, 1 row affected (0.00 sec)
Database changed
Query OK, 0 rows affected (0.03 sec)
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.08 sec)
Query OK, 0 rows affected (7 min 14.33 sec)
使用了7分钟才把创建成功!!!
- 查询员工编号为998877的员工
mysql> select * from EMP where empno=998877; -- 查询empno等于998877的信息
+--------+--------+----------+------+---------------------+---------+--------+--------+
| empno | ename | job | mgr | hiredate | sal | ***m | deptno |
+--------+--------+----------+------+---------------------+---------+--------+--------+
| 998877 | YdtJnn | SALESMAN | 0001 | 2024-09-26 00:00:00 | 2000.00 | 400.00 | 272 |
+--------+--------+----------+------+---------------------+---------+--------+--------+
1 row in set (4.25 sec)
可以看到耗时4.25秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有1000个人并发查询,那很可能就死机。
- 解决方法,创建索引
mysql> alter table EMP add index(empno); -- 创建索引
Query OK, 0 rows affected (23.22 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> select * from EMP where empno=998877; -- 索引创建后之后查询速度成倍加快
+--------+--------+----------+------+---------------------+---------+--------+--------+
| empno | ename | job | mgr | hiredate | sal | ***m | deptno |
+--------+--------+----------+------+---------------------+---------+--------+--------+
| 998877 | YdtJnn | SALESMAN | 0001 | 2024-09-26 00:00:00 | 2000.00 | 400.00 | 272 |
+--------+--------+----------+------+---------------------+---------+--------+--------+
1 row in set (0.00 sec)
- 换一个员工编号,测试看看查询时间
mysql> select * from EMP where empno=123456;
+--------+--------+----------+------+---------------------+---------+--------+--------+
| empno | ename | job | mgr | hiredate | sal | ***m | deptno |
+--------+--------+----------+------+---------------------+---------+--------+--------+
| 123456 | wJdsBE | SALESMAN | 0001 | 2024-09-26 00:00:00 | 2000.00 | 400.00 | 188 |
+--------+--------+----------+------+---------------------+---------+--------+--------+
1 row in set (0.00 sec)
1.2、认识磁盘
1.2.1、MySQL与存储
MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一个重要话题。
1.2.2、先来研究一下磁盘
1.2.3、在看看磁盘中一个盘片
1.2.4、扇区
数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。
题外话:
- 从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大
- 那么,所有扇区都是默认512字节吗?目前是的,我们也这样认为。因为保证一个扇区多大,是由比特位密度决定的。
- 不过最新的磁盘技术,已经慢慢的让扇区大小不同了,不过我们现在暂时不考虑。
- 我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。(当然,有一些内存文件系统,如: proc , sys 之类,我们不考虑)
# 数据库文件,本质其实就是保存在磁盘的盘片当中,就是一个一个的文件
[root@host mysql]# ll /var/lib/mysql
所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区。
而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的。
1.2.5、定位扇区
- 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面
- 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的
- 所以,我们只需要知道,磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编号。即可在磁盘上定位所要访问的扇区。这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用的并不是 CHS (但是硬件是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。系统将 LBA 地址最后会转化成为 CHS ,交给磁盘去进行数据读取。不过,我们现在不关心转化细节,知道这个东西,让我们逻辑自洽起来即可。
1.2.6、结论
我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节,部分4096字节),进行IO交互吗?不是
- 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬件发生变化,系统必须跟着变化
- 从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。
- 之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块。
故,系统读取磁盘,是以块为单位的,基本单位是 4KB 。
1.2.7、磁盘随机访问与连续访问
随机访问(Random A***ess):本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。
连续访问(Sequential A***ess):如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。
因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。
磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高。
1.3、MySQL 与磁盘交互基本单位
而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高基本的IO效率, MySQL 进行IO的基本单位是 16KB (后面统一使用 InnoDB 存储引擎讲解)
mysql> show global status like 'innodb_page_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| Innodb_page_size | 16384 |
+------------------+-------+
1 row in set (0.02 sec)
-- 16 * 1024 = 16384
也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分)
1.4、建立共识
- MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
- MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
- 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。
- 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page。
- 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互。
- 为何更高的效率,一定要尽可能的减少系统和磁盘IO的次数